
Nature | www.nature.com | 1

Article

Rules of river avulsion change downstream

James H. Gearon1 ✉, Harrison K. Martin1,2, Clarke DeLisle1, Eric A. Barefoot1,3, David Mohrig4, 
Chris Paola5 & Douglas A. Edmonds1

Avulsing rivers create new pathways on the floodplain and the associated flooding  
can profoundly affect society1–4. River avulsions are thought to occur when the water 
column becomes perched above the floodplain5 or when the slope down the flanks of 
the channel provides a steeper descent than the existing river channel6,7. We test these 
classical ideas by quantifying the topography around avulsing rivers and show that 
these mechanisms, historically invoked separately, work together. Near coasts, rivers 
avulse when the slope away from the channel is steeper, not because they are perched. 
The opposite is true near mountain fronts; on fans, the alternative paths are similarly 
steep to the downstream path, so rivers avulse when they are perched above the 
surrounding landscape. We reconcile these findings and present a new theoretical 
framework that identifies which rivers are vulnerable to avulsion and predicts the 
path of an avulsing river. These first-order rules of avulsion suggest that avulsion risks 
are underestimated in many coastal environments8 and that probabilistic predictions 
of avulsion pathfinding can efficiently map hazards with minimal information. 
Applying these principles for risk assessment could particularly benefit the Global 
South, which is disproportionately affected by avulsions.

When a river breaches its banks and shifts course on the floodplain, 
the resulting avulsion not only reshapes the surrounding landscape 
but also inflicts devastating floods on nearby communities. Unlike 
floods caused by precipitation, avulsions strike with little warning, 
after decades to millennia of accumulating sediment alters the river 
configuration enough to destabilize the channel9. The long intervals 
between avulsions10, coupled with their catastrophic nature1–3, pose 
substantial challenges in managing avulsion hazards. As climate change 
intensifies, some rivers may avulse with increasing frequency8 or in 
different locations9, trends that could disproportionately affect the 
Global South. At present, we cannot predict avulsions because they are 
incompletely understood; metrics for avulsion likelihood are heuristic 
and controls on path selection across the floodplain are undefined5,10,11. 
To address these gaps and resolve the fundamental rules of river avul-
sion, we base our approach on observations.

River avulsions are thought to occur when sediment deposition on 
the river bed causes superelevation or gradient advantage. Supereleva-
tion β H H( = / )AR M  is the ratio of alluvial ridge height (HAR) to bankfull 
depth (HM). Gradient advantage γ S S( = / )AR M  is the ratio of alluvial ridge 
slope (SAR) to channel slope (SM). When the river bed aggrades to the 
floodplain level, the channel becomes superelevated (β ≈ 1; Fig. 1a). 
Avulsions become likely as the water surface is perched above the 
floodplain10–12. When the topographic slope perpendicular to the river 
exceeds the channel slope, the alternative river path has a gradient 
advantage (γ > 1); models suggest that γ > 3–10 makes a river prone to 
avulsion-inducing overbank flows6,7,13,14. Although these avulsion rules 
are widely used15, they are largely based on physical intuition and their 
relative importance is debated5–7,13,14. In part, this is because accurately 
measuring β and γ on global digital elevation models (DEMs) is 

challenging; topographic artefacts, such as vegetation and human 
modifications, can obscure subtle topography around riverbanks16. 
Consequently, for a small number of avulsed rivers, β varies from 0.2 
to 1.4 (refs. 5,12,17), but it is unknown whether these values are repre-
sentative.

Here we investigate the rules for river avulsion by measuring the 
topography of recently avulsed rivers and the factors that influence 
avulsion pathways. Using a global avulsion dataset (Fig. 1b), ICESat-2, 
and a bare-earth DEM, we measure β and γ on 58 rivers. Furthermore, 
for a subset of ten rivers with pre-avulsion topography, we simulate 
avulsion pathfinding with a random walk model. Our measurements 
and pathfinding model explain how β and γ govern avulsion mechanics 
and how their relative importance varies from source to sink.

Avulsion drivers from source to sink
Previous work has shown that avulsions are common near mountain 
fronts and coastlines because sediment accumulates there18. We com-
piled examples of 174 globally distributed river avulsions throughout 
the source-to-sink system, observed in Landsat satellite images from 
1984 CE to the present (Fig. 1b and Supplementary Table 1). Avulsion 
is defined as the channel relocating to a new floodplain position out-
side the active channel belt. We measured the distance (s) along the 
channel centreline from the mountain front to each avulsion posi-
tion and divided it by the total length (st) of the alluvial portion of the 
source-to-sink system, giving each avulsion a normalized position from 
0 to 1 (XN; Fig. 2a). st was measured from the mountain front to the near-
est shoreline, such as an ocean, sea or inland lake. For a subset of avul-
sions (n = 58) with sufficient data quality, we generated cross-sections of 
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river topography near the avulsion site. To make cross-sections, we used 
ICESat-2, a spaceborne lidar platform that can penetrate vegetation 
canopies19 (Extended Data Figs. 1 and 2), and FABDEM20, a bare-earth 
version of COPDEM30. We validated 38 of the FABDEM measurements 
of HAR and SAR with ICESat-2 to ensure agreement between data sources 
(Extended Data Fig. 2). We estimated HM with a new XGBoost regressor 
trained on a dataset21 of hydraulic geometric relationships (n = 4,006) 
and measured all other quantities in Fig. 1a with FABDEM or ICESat-2 
(see Methods). Using these data, we measured β and γ on the main 
channel as close to the avulsion site as possible, assuming that the 
observed topographic state represents the pre-avulsion conditions 
(Supplementary Table 2).

The full dataset shows that avulsions occur throughout the 
source-to-sink system but also reveals that the distribution is bimodal. 
Avulsions are about three times more common at mountain fronts and 
shorelines than in between the two (Fig. 2a,b). Of the 174 river avul-
sions we catalogued, 74% (n = 129) occur within 15% of the normalized 
distance to the mountain front (n = 81) or shoreline (n = 48). For the 
avulsion sites with sufficient data quality (n = 58), the average values 
of β and γ closely matched predicted theoretical ranges (Fig. 2c,d).

We split our data into three geomorphic groups: (1) rivers on alluvial 
or fluvial fans (n = 19) exit the mountain front with a distributive plan-
form; (2) alluvial plain rivers (n = 8) show no radial distribution and 
have crevasse splays, flood basins or anastomosis; (3) deltaic rivers 
(n = 31) have distributary networks entering a local water body. We 
then normalized the avulsion position, XN, by SM:

X SSPR* = / (1)N M

Because SM scales with upstream basin area22, this slope–position 
ratio (SPR*) enables comparisons of avulsions at similar XN across basins 
of different sizes and slopes, effectively ordering them from steeply 
sloping proximal rivers to gently sloping distal rivers (Fig. 2g,h).

Approximately 86% of the avulsions occurred on either alluvial or 
fluvial fans near the mountain front or on deltaic fans near the shoreline, 
whereas only 14% occurred on alluvial floodplains in the middle por-
tions of river basins. For avulsed rivers, the values of β and γ vary across 
geomorphic landform (Fig. 2e,f) and from source to sink (Fig. 2g,h). 
Near the source, β ≥ 1 consistent with classical expectations for avuls-
ing rivers, before decreasing to <0.1 in more distal settings (Fig. 2g). 
Notably, as β decreases moving from source to sink, γ increases sub-
stantially from 1 to about 32 (Fig. 2h).

Uniting β and γ
β and γ both indicate the likelihood of avulsion, yet on avulsed rivers, 
we find that they are inversely related (Fig. 3a). Using only one of these 
metrics to estimate avulsion likelihood is standard practice7,8,10,12–15,17,18 
but leaves half of the problem unconstrained. For example, previous 
studies7,23 have interpreted avulsive rivers with high γ and low β as 
contradictory. Instead, β and γ are fundamentally related when the 
conditions for avulsion are recast as a shear stress advantage. River 
avulsions are more likely when water flowing down the alluvial ridge 
flank exerts greater shear stress (τAR) than the shear stress on the bed 
of the main channel (τM) by some multiple Λ. A larger τAR that exceeds 
the threshold for sediment entrainment should erode the alluvial 
ridge and the river will avulse if a suitable path exists. The temporal 
and spatial scales of deposition that set up avulsion are long10 and 
thus τAR and τM can be approximated with steady, uniform flow in a 
rectangular channel. In this framework, we do not account for the 
shorter-timescale events that trigger avulsions. Then, for an avulsion  
to occur:

τ Λτ≥ (2)AR M

ρgH S ΛρgH S≥ (3)AR AR M M
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Fig. 1 | Global distribution of river avulsions. a, Schematic of river topography. 
HAR is the vertical distance from the ridge crest to the floodplain surface. SAR is 
measured perpendicular to flow direction from the ridge crest to the floodplain 

and SM is measured along the levee crest following the channel. b, Avulsions 
(since 1984 CE and coloured by geomorphic landform) used in this study (n = 174). 
Circles show avulsions with measurements of β and γ (n = 58).
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in which ρ is fluid density and g is gravitational acceleration. HAR defines 
the flow depth that could be released onto the floodplain at bankfull 
flow; this assumption is a useful simplification that could be relaxed 
in future treatments (for example, ref. 6). We measure SAR orthogonal 
to the main channel centreline, consistent with crevasse splay take-off 
angles24. The framework provided by equation (3) is simple by design so 
that it captures the first-order causes of avulsion and is generalizable 
to a variety of settings.

Rearranging and incorporating our definitions of β and γ, the avul-
sion threshold can be expressed as:

βγ Λ≥ (4)

When formulated as a shear stress advantage, the avulsion threshold 
depends on the product of superelevation and gradient advantage. This 
implies that, for a given value of Λ, β and γ are inversely related, which 
is consistent with our measured field data but opposite to classical 
ideas (Fig. 3). Previously published ranges of β (0.2–1.4) and γ (3–10) 
(refs. 5,6,11,12) provide bounds on an initial estimate of Λ of 0.6–14. 
Our measurements show that Λ ranges from 0.2 to 11 with a median of 
2.1, suggesting that an avulsion occurs when the shear stress down the 
alluvial ridge flank is about twice that in the main channel (Fig. 3b). The 
range of Λ is relatively narrow (Fig. 3b), even though our framework does 
not address variations in vegetation, grain size or floodplain conditions 
such as pre-existing channels25 or events that trigger avulsion. These 
uncontrolled factors may account for the variability in Λ.

Avulsed rivers on alluvial or fluvial fans have high β and low γ, whereas 
the opposite is true for deltas (Figs. 2e–h and 3a), reflecting different 

avulsion rules near the source compared with the sink. This behaviour 
is predicted by the Λ framework as avulsion initiation depends on the 
relative growth rate of both β and γ. As an alluvial ridge grows on fans, 
β increases faster than γ because channel depths near the source are 
relatively shallow and surrounding slopes are relatively steep, making 
superelevation easier to achieve. The opposite is true on deltas; it is 
easier to achieve gradient advantage because surrounding slopes are 
relatively flat and deltaic channels are relatively deep. An alternative 
explanation suggests that low β in deltas results from larger variations 
in river stage height, which creates more frequent trigger events that 
lead to avulsion at lower than expected β (ref. 17). In the absence of stage 
height data, we test this by using the discharge range normalized by 
the mean discharge for each avulsed river, which also describes vari-
ability around the central tendency. We find no correlation between β 
and this measure of variance (R2 = 0.05, p = 0.1; Extended Data Fig. 4).

Modelling the path taken by avulsions
β and γ both influence when avulsions will occur, yet determining the 
path avulsions will take across the floodplain remains challenging. 
Roughly 75% of avulsions have Λ > 1, suggesting that they initiate when 
there is a shear stress advantage relative to the main channel. To test if 
path selection is governed by this shear stress advantage, we introduce 
a random walk algorithm that incorporates the basic properties of a 
gravity-driven flow by selecting a path based on the slope differences 
to the surrounding cells (S) and the inertial tendency to resist changes 
in direction from the previous step (I). We use an algorithm based on 
the softmax function and cosine similarity to compute transition 
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probabilities P to neighbouring pixels that depend on exponents for 
slope (ϕ) and inertia (ψ), and a blending parameter (ω), such that:

P x y i j ωϕS ω ψI(( , ) → ( , )) = softmax ( + (1 − ) ) (5)i j i j i j, , ,

in which the softmax function exponentiates the sum of ϕS and ψI 
weighted by ω (see Methods). We selected the softmax function because 

it generates a valid probability distribution over a vector of discrete 
choices. Because avulsions modify their paths, we found six completed 
avulsions from our original dataset (Fig. 4a–c,g,h and Extended Data 
Fig. 6a) that occurred after the collection period of a global DEM, includ-
ing SRTM for unvegetated regions, such that the measured topography 
represents the pre-avulsion conditions. To increase the number of 
test cases, we also included four continuing avulsions (Fig. 4d–f and 
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Extended Data Fig. 6b). We conducted 100 random walk model trials 
starting from the riverbank of the known avulsion location and using 
ω = 0.5, ϕ = 10 and ψ = 1 (see Methods for details). In all cases, the pre-
dicted avulsion path overlaps nearly the entire observed path (Fig. 4 
and Extended Data Fig. 6). The model works on all landforms, includ-
ing proximal fans (Fig. 4a–c), alluvial plains (Fig. 4d–f and Extended 
Data Fig. 6b) and deltas (Fig. 4g,h and Extended Data Fig. 6a) and in 
cases in which the pathway is inherited (Fig. 4c,h) or constructed by 
the advancing river (Fig. 4a,b,d–g and Extended Data Fig. 6a,b). In two 
cases, the model correctly identifies several pathways from the same 
event (Fig. 4a,e). The success of these pathfinding experiments implies 
that avulsions tend to seek steeper paths that minimize directional 
changes on the floodplain. If these tuning parameters are universal, as 
our initial results suggest, then equation (5) could be used to predict 
future avulsion pathways.

Implications for hazard management
These new rules can help prepare for avulsion-related hazards. Previous 
work commonly estimates the time between avulsions as the time to 
aggrade a channel depth and achieve β = 0.5–1.0 (refs. 5–15,17,18,26), 
but β only accounts for half of Λ and depends on the source-to-sink posi-
tion. In deltaic environments, avulsion might occur sooner than esti-
mated, as roughly 60% of deltas in our dataset have β < 0.5 (Fig. 2g,h), 
which is notable because deltas are heavily populated and are evolving 
rapidly in response to climate change27,28.

Our new rules are simple and could be used to generate 
catchment-scale maps of Λ, a first step in identifying avulsion hazards. 
Improved global bare-earth DEMs will enable mapping of potential 
avulsion corridors using topographic data and our pathfinding algo-
rithm. Complete risk assessments will require expanding our frame-
work to account for time-dependent flooding, bank erosion or river 
engineering.

Avulsions pose invisible flood hazards unaddressed by current flood 
models focused on predicting surging water levels. In fact, avulsion 
flooding does not always follow unprecedented rain1, making tradi-
tional warning signs unreliable29. Flood models cannot identify avul-
sion sites because they do not include the erosion and deposition that 
precede avulsion30–32. This limitation perpetuates disparities in flood 
risk management, especially in the Global South (Fig. 1b and Extended 
Data Fig. 5), in which avulsions are more frequent, possibly because 
of geologic and climatic factors or differences in river engineering 
practices.
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Methods

Avulsion dataset
We assembled a dataset of 174 avulsion locations (Fig. 1b). We ensured 
the quality and reliability of our data by selecting only rivers with docu-
mented avulsion events in the satellite era (1984 CE to the present). 
Our dataset combines observations from three previous studies18,33,34 
and is supplemented with further observations that we collected. We 
define avulsion as the relocation of a channel to a new position on the 
floodplain outside the active channel belt that has reconnected to an 
existing channel downstream or intersected the shoreline. We do not 
include small changes that occur within the active channel belt (for 
example, chute cut-offs, in-channel bifurcation and bar development 
or crevasse development). Both annexational and progradational styles 
of avulsion are included. Similarly, both local and regional avulsions 
are included, as well as partial and full avulsions. An avulsion does not 
have to be completed within the observation window to be included. 
We also avoided including any avulsions for which it was reasonably 
clear that human activities may have rerouted the river.

Topographic datasets
Most global DEMs have inaccurately captured topography surrounding 
rivers. This is especially true in remote areas in which high-resolution 
topographic data or bare-earth models are unavailable. In these loca-
tions, readily available topography comes from radar-derived DEMs, 
such as SRTM and ASTER, that have low horizontal resolutions (30–90 m 
per pixel), speckling effects and cannot separate land elevation from 
vegetation canopy height in low-relief alluvial settings16. Moreover, 
most avulsions in the satellite era occur in active tectonic settings such 
as the Andean, Himalayan and Papua New Guinean basins, in which 
dense tree cover affects radar performance.

To address this issue, we use ICESat-2 and the Forest and Buildings 
removed Copernicus Digital Elevation Model (FABDEM) to analyse 
topography around rivers. NASA’s ICESat-2 (2018 to the present) pro-
vides a lidar platform that balances resolution, coverage and latency 
for precise measurements of narrow swaths of Earth’s surface. ATLAS—
ICESat-2’s single instrument—is a spaceborne lidar system that uses 
photon-counting technology and operates at a high repetition rate 
of about 10 kHz. This enables ATLAS to cover narrow swaths of the 
Earth’s surface with near-continuous data35. ICESat-2 can capture 
the topography around river channels, including the alluvial ridge 
(Extended Data Fig. 1). Of the products derived from ICESat-2, we use 
ATL03, the geolocated photon data, and ATL08, land and vegetation 
heights. ATL03 photons have an along-track spacing of 0.70 m and a 
circular footprint about 17 m in diameter. ATL08 data are produced 
by a custom photon classification algorithm that reduces ATL03 data 
into 100-m segments36. These segments capture the ground surface 
elevation accurately, even in areas with high vegetation cover (up to 
90%; root mean square error (RMSE) = 0.73 m (ref. 19)), which is ideal 
for quantifying gradient advantage and superelevation on recently 
avulsed rivers in riparian or tropical settings. A key feature of the ATL08 
product is that it classifies all ATL03 photons within 100-m segments 
before reducing them. This allows us to remap ATL08 surface classifica-
tions at 100-m resolution back to sub-metre resolution with geolocated 
photon data (ATL03). Recent work35 showed that ATL03 photon data 
with remapped ATL08 classifications can be used reliably in vegetated 
areas (R2 = 1.00, RMSE = 0.75 m).

FABDEM was created with a three-step algorithm to remove signals of 
forests and buildings from the 30-m Copernicus DEM (COPDEM30)20. 
FABDEM outperformed other global DEMs in deltaic flood models 
owing to its better estimation of delta surface heights and a lack of strip-
ing or other artefacts37,38. Crucially, FABDEM was originally validated 
using ICESat-2 ATL08 data, showing good alignment with a mean error 
of −0.03 m and an error percentage <2 m of 80.42%. The water surfaces 
in FABDEM are inherited from COPDEM30, which was hydro-flattened, 

rendering the water surface non-physical39. As such, we used ICESat-2 
to measure water surface elevations for all 58 rivers. This was possible 
because water surfaces reflect ICESat-2 photons more readily than 
vegetated ground cover and orthogonality restraints could be relaxed, 
leading to more available data on water surface elevations. We fur-
ther validated FABDEM by comparing measurements of alluvial ridge 
heights and slopes with those from ICESat-2 (n = 38; Extended Data 
Fig. 2 and Supplementary Table 3). These validation measurements 
are denoted in the data files, whereas ten were not co-located with 
avulsion sites.

Calculating β and γ
We generated three measurements of β and γ for every avulsion site. 
The measurements were done with a combination of FABDEM and 
ICESat-2. Repeat measurements were taken within roughly three chan-
nel widths to reduce measurement variance around the avulsion node. 
ICESat-2 was preferred for all topographic measurements apart from 
SM, which was exclusively measured using FABDEM. ICESat-2 data were 
limited in coverage and required transects to be close to the avulsion 
node (within about ten channel widths), orthogonal (within roughly 
20° of the perpendicular to the channel centreline) and to contain 
high enough signal-to-noise ratio to resolve ground elevations. The 
data sources for each avulsion site are listed in Supplementary Table 2.

To calculate γ, we measured SAR orthogonal to the main channel 
at points upstream of the avulsion node on the main channel (Sup-
plementary Table 2). We avoided measurements downstream of the 
avulsion site because this part of the channel was created during the 
avulsion and may have different characteristics. Slopes were meas-
ured from the ridge crest to the floodplain and calculated as allu-
vial ridge crest elevation minus floodplain elevation over distance 
between. For SM, we measured upstream and downstream of the avul-
sion node along the main channel within approximately 50 channel 
widths. Effort was made to maintain local slopes, that is, omitting 
obvious upstream or downstream slope breaks to ensure a linearly 
sloping region around the avulsion node. Repeat measurements of 
γ were taken, one on either side of the channel and a third directly 
next to one of the previous measurements. Sometimes, only one 
bank shows a ridge form, in which case all measurements are taken on  
that side.

Calculating β requires measuring: (1) alluvial ridge elevation; (2) 
water surface elevation; (3) floodplain elevation; and (4) channel depth. 
As ICESat-2 can rarely resolve channel bed elevations owing to strong 
absorption of near-infrared laser pulses by turbid water, the fourth 
value, channel depth, was estimated with a machine learning model 
(see the next section, ‘Estimating channel depth’). HAR was calculated 
by subtracting the alluvial ridge elevation from the elevation of the 
floodplain (Extended Data Fig. 1). The alluvial ridge elevation was 
determined by selecting the lowest of the two high points on either 
side of the channel along an orthogonal cross-section (for example, 
Extended Data Fig. 1).

Determining what constitutes the floodplain is not always straight-
forward. Following ref. 26, we manually define the floodplain eleva-
tion as the location next to the channel for which the ridge flank 
slope asymptotically approaches the surrounding floodplain. If 
there is no obvious asymptote but the topography next to the ridge 
form approaches a constant level of variability at lower scales than 
the ridge form itself, we select the position on the cross-section that 
represents the onset of the most consistent low elevation within that 
range of variability. Sometimes, one bank abuts a valley wall whereas 
the other side maintains a more typical ridge geometry. In these cases, 
measurements are taken on the half-ridge form. In edge cases that do 
not fall into the categories defined above, the floodplain is picked as 
the lowest point in between the ridge form and the next highest topo-
graphic location that is taller than the ridge moving outward along the  
cross-section.



Estimating channel depth
There are numerous ways to estimate channel depth using empirical 
equations from hydraulic geometry40 or semi-theoretical equations 
from open channel flow41. Theoretical equations are difficult to con-
strain and hydraulic geometry equations can vary from site to site. To 
overcome these issues and generate a reliable estimate of depth that can 
be applied globally, we trained a machine learning model on a dataset 
of 4,006 measurements from two datasets of channel depth, discharge, 
slope and width21,42. Our model, the Boost-Assisted Stream Estimator 
for Depth (BASED), uses an XGBoost regressor as the prediction engine. 
XGBoost implements gradient-boosted decision trees and is consid-
ered the state-of-the-art regression model for structured data, even 
outperforming deep learning models in regression and classification 
tasks43,44. Our BASED model uses measured discharge, channel slope 
and channel width to estimate bankfull depth. The performance of the 
model was gauged with the mean absolute error (MAE), the RMSE, the 
coefficient of variation (R2) and the mean absolute percentage error 
(MAPE). The final model’s metrics are MAE = 33 cm, RMSE = 104 cm, 
R2 = 0.89 and MAPE = 20% (Extended Data Fig. 3a).

To develop the BASED, we split the 4,006 measurements into training 
(n = 3,046) and testing (n = 762) sets (Supplementary Table 4). We com-
pared the BASED model to a simple power law function between depth 
and discharge for the test set (Extended Data Fig. 3a,b). We trained the 
BASED model using a Bayesian parameter tuning and cross-validation 
scheme to avoid overfit. The training datasets we use contain a mix of 
bankfull and non-bankfull discharge measurements, so to validate if 
BASED can predict bankfull depth, we compared depth predictions to 
a validation set of bankfull depths (n = 198)45 (Supplementary Table 5). 
The BASED can predict bankfull depth measured in the field (blue dots, 
Extended Data Fig. 3c). After training, testing and validation, the BASED 
model was retrained on all the available data to generate the most accu-
rate and comprehensive model for deployment.

BASED requires discharge, channel bed slope and channel width to 
estimate bankfull depth, but we do not have in situ discharge measure-
ments for the avulsed rivers. So, for discharge of the avulsed rivers, 
we use the maximum modelled values of natural discharge from the 
RiverATLAS dataset, a global-coverage dataset of yearly modelled river 
discharge values46. Discharges are derived from 30-year (1961–1990) 
monthly discharge averages calculated by the WaterGAP v2.2 model46. 
River discharge is calculated at 0.5° resolution and downscaled to 
15-arcsec resolution47. The downscaled discharges are measured to 
0.001 m3 s−1, but accuracy at that level is not entirely reliable. To test the 
reliability of discharges from RiverATLAS, we reran the BASED model 
predictions for the validation set45 but used the annual maximum 
discharge reported by RiverATLAS for each river (red dots, Extended 
Data Fig. 3c). The BASED model underpredicts depth because the 
RiverATLAS annual maximum discharge underestimates measured 
bankfull discharge (Extended Data Fig. 3d). To address this issue, we 
fit a power law to the relationship between modelled and measured 
discharge and then inverted it to correct the RiverATLAS discharge. 
After correcting the RiverATLAS discharges for the validation set, the 
predicted values are now centred on the 1:1 line with an RMSE of 47 cm 
(Extended Data Fig. 3e). We predict the depths of avulsed rivers in our 
dataset applying this correction to the annual maximum discharge 
values from RiverATLAS.

Superelevation (see ref. 5) defines the channel depth (HM) as the dif-
ference between the elevation of the alluvial ridge crest and the channel 
bed (Extended Data Fig. 1). We use three operational rules to determine 
the depth of rivers in our dataset. Let’s define A as the distance meas-
ured from the alluvial ridge crest to the water surface as measured 
by ICESat-2 and B as the channel depth predicted from BASED. If: (1) 
A ≤ B, we set HM = B because the predicted depth is below the observed 
water surface from ICESat-2; (2) 1 < A < 1.5B, we look for evidence in the 
ICESat-2 profile that in-channel sediment bars are exposed. If we see 

these, we set HM = A. If bars are not visible, then we use method 3; (3) 
A ≥ 1.5B, then we set HM = A + B. Roughly one-third of the rivers in our 
dataset have A ≥ 1.5B. By using HM = A + B, we are effectively assuming 
that the water surface recorded by ICESat-2 represents some kind of 
average condition. The depth rule we used for each avulsion is recorded 
in Supplementary Table 2. In four cases, the BASED predicted a small 
negative number, a possibility when working with unbounded regres-
sions. In these cases, we substituted a low positive value, 0.1 m.

The cause of why A > 1.5B is not easy to pinpoint, but one possibility is 
that these rivers are out of equilibrium with their discharge. The ref. 21 
dataset represents one of the largest and most complete compilations 
of river depth and its controlling variables, but the rivers used are from 
North American and European settings. The avulsing rivers used in this 
study are in monsoonal climates and strongly aggradational geologic 
settings in which it is possible that levee aggradation could be decou-
pled from bed aggradation, leading to larger than expected depths. 
Avulsing rivers also commonly reoccupy pre-existing channels on the 
floodplain and the depth they inherit may not be in equilibrium with 
the discharge.

Error treatment
We used a probabilistic error treatment for β and an analytical one 
for γ based on the data incorporated into the two ratios. β contains a 
measurement from FABDEM in the numerator HAR and in the denomina-
tor a depth estimate from the BASED, a model output or the elevation 
datasets, depending on the relationship between A and B (see above). 
Owing to these nuances in the denominator, the underlying distribution 
of error is unconstrained, requiring a probabilistic approach. γ consists 
of two measurements from only ICESat-2 or FABDEM and the standard 
deviations of both the numerator and the denominator are log-normal. 
That is, the error distribution is known a priori and, therefore, analytical 
log-adjusted error propagation methods can be used.

We estimated β ratios and their uncertainties using a Monte Carlo 
simulation approach. For each data point, we randomly selected one 
of the three measurements (i = 1, 2 or 3) that correspond to different 
combinations of alluvial ridge elevation, floodplain elevation and water 
elevation. We then sampled the ridge height from a triangular distribu-
tion with a lower bound of −0.6 m, a mode of 0 m and an upper bound of 
0.6 m, based on the MAE values from Extended Data Fig. 2. We sampled 
the water surface elevation from a triangular distribution with a lower 
bound of −0.25 m, a mode of 0 m and an upper bound of 0.25 m. We 
sampled the BASED predicted depth from a triangular distribution 
with a lower bound of −1.0 m, a mode of 0 m and an upper bound of 
1.0 m. The errors represent the uncertainty in the measurements of 
these variables. We calculated the superelevation ratio using one of 
the three methods (1, 2 or 3), depending on the method used (see the 
‘Estimating channel depth’ section). We repeated this process for a 
large number of simulations (n = 10,000).

For the variable γ, we quantified uncertainty by computing the stand-
ard errors for the means of SAR and SM, which were obtained by dividing 
their respective standard deviations by the square root of the number 
of measurements involved. The means were log-transformed on the 
basis of the results of Shapiro–Wilk tests that confirmed the normal-
ity of the log-transformed SAR and SM data. The standard error of the 
log-transformed means was then calculated, providing a measure of 
variability in the log domain. Subsequently, we derived the relative error 
in γ by taking the square root of the sum of the squared log-transformed 
standard errors, which presumes a log-normal distribution of uncer-
tainty. We back-transformed this relative error to express the absolute 
uncertainty in γ on its original scale.

Softmax random walk
Our softmax random walk model describes a method for calculating 
the probability of movement across a grid of elevations as a function 
of topographic slope and a representation of flow inertia. The slope is 
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calculated on the basis of the elevation difference between the current 
position and its neighbours, adjusted for the direction of movement 
(diagonal or straight). The inertia is determined by comparing the 
direction of the last move to the potential next move, using cosine 
similarity to quantify similarity between directions. These two factors 
are then weighted and combined using specified parameters to repre-
sent the influence of slope and inertia on movement. The combined 
weight is transformed using the softmax function, which converts these 
weights into probabilities, ensuring they sum to 1 and thus can be inter-
preted as the likelihood of moving to each neighbouring position. The 
model avoids returning to the immediate last position to simulate more  
realistic movement patterns.

This method provides a probabilistic prediction for movement in 
a terrain-aware context, blending physical geography (slope, ϕ) with 
movement history (inertia, ψ). The selection of the starting parameters 
(ω = 0.5, ϕ = 10 and ψ = 1) was informed by repeated trial and error. We 
opted to use the selected parameters because they provided good fits 
across a variety of floodplain physiographies. Other combinations 
that include a larger value of ψ also provided good fits. See the Sup-
plementary Information for an extended derivation.
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Extended Data Fig. 1 | Computation of β and γ for avulsion TURK_002_1991 (40.143, 28.556). Using both ICESat-2 and FABDEM, these calculations were done 
three times based on distinct measurements.
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Extended Data Fig. 2 | Validation of alluvial ridge height (HAR) and slope 
(SAR) measurements between FABDEM and ICESat-2, n = 38. a, Alluvial ridge 
height 1:1 plot, MAE is 0.59 m, RMSE is 0.71 m and R2 is approximately 0.92 with 
a p-value of 1.1 × 10−20. b, Alluvial ridge slope 1:1 plot, MAE is 0.0056 m m−1, RMSE 
is 0.007 m m−1 and R2 is 0.83.



Extended Data Fig. 3 | BASED model validation and RiverATLAS discharge 
correction. a, BASED-predicted depths against measured depth from the test 
set (n = 762). MAE = 33 cm, RMSE = 102 cm, R2 = 0.89 and MAPE = 20%. The 
BASED achieves higher accuracy than a power-law fit for estimates of channel 
depths. b, Predicting channel depth is typically done with a power-law fit (n = 762). 
Using the test set from a compilation of hydraulic geometric data21,42, we fit a 
relationship between depth and discharge (y = 0.31x0.38). In this case, MAE = 64 cm, 
RMSE = 129 cm, R2 = 0.83 and MAPE is 35%. c, BASED-predicted depths against a 
validation set of measured bankfull depths from ref. 45. Blue points are BASED 

depth estimates using in situ discharge measurements, red points are BASED 
depth estimates using RiverATLAS-modelled maximum discharge values (n = 198). 
d, Relationship between RiverATLAS maximum discharge and measured 
discharge from ref. 45. RiverATLAS systematically underestimates discharge 
and to correct this, we fit a power law ( y = 0.39x0.90) to the data and invert it to 
get e (n = 198). e, Relationship between BASED depth estimates using the 
corrected RiverATLAS maximum discharge and measured bankfull depth from 
ref. 45. Associated RMSE is 47 cm (n = 198).
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Extended Data Fig. 4 | No notable correlation between β and discharge 
variance. We calculated Q* as the range of corrected annual discharge over 
corrected mean annual discharge from RiverATLAS50. The more typical 
coefficient of variation requires the standard deviation to compute, which is 
unavailable in RiverATLAS. As such, we chose Q* as it also describes variance 
around the central tendency. An OLS (ordinary least squares) regression on 
calculated β values and Q* shows no notable correlation between the two 
ratios (n = 58).



Extended Data Fig. 5 | Disproportionate impact of river avulsion on the 
Global South. Using data from NASA’s Global Gridded Relative Deprivation 
Index (GRDI), we compiled mean values for watersheds that contain our 
avulsion nodes, based on the Pfafstetter level 7 (blue). Comparing these with 

mean values of the G20 nations (red)—which represent a group of industrialized 
nations accounting for 85% of the global GDP51,52—we find that G20 deprivation 
indices are notably lower than in areas in which recent river avulsions have 
taken place.



Article

Extended Data Fig. 6 | Further examples of the softmax random walk.  
a, Delta avulsion. Note that the avulsion carved through the downstream 
floodplain, something the random walk cannot reproduce. b, Floodplain 

continuing avulsions. In this case, the flow was directed around a town with a 
diversion structure, causing a slight misfit in the results. These avulsions are 
not included in the avulsion dataset as they are incomplete.
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